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Vibrational spectra and normal modes of mechanically stable particle packings in three dimensions are
analyzed over a range of compressions, from near the jamming transition, where the packings lose their
rigidity, to far above it. At high frequency, the normal modes are localized at all compressions. At low
frequency, the nature of the modes depends somewhat on compression. At large compressions, far from the
transition, the lowest-frequency normal modes have some plane-wave character, though less than one would
expect for a crystalline or isotropic solid. At low compressions near the jamming transition, the lowest-
frequency modes are neither plane-wave-like nor localized. We characterize these differences, highlighting the
unusual dispersion behavior that emerges for marginally jammed solids.
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I. INTRODUCTION

It is well recognized that the high-frequency vibrations in
amorphous materials are strikingly different from those in
crystals. In glasses and other amorphous solids, the highest-
frequency normal modes are localized in space, while in
crystals they are extended excitations �1–3�. It is also appre-
ciated that even at low frequencies the normal modes of dis-
ordered systems can be dramatically different from the long-
wavelength plane waves found in ordered materials. The
vibrational spectra of amorphous solids are characterized by
“boson peaks”—extra low-frequency modes beyond the
long-wavelength plane-wave phonons found in crystals. The
anomalous modes that fall within the boson peak are be-
lieved to be responsible for the unusual low-temperature
properties of glasses, such as the plateau in the thermal con-
ductivity �4,5�.

Nowhere are the excess low-frequency excitations more
apparent than in a marginally jammed solid, in which a sys-
tem of particles is compressed to the point where they first
begin to touch and form a rigid structure �6–14�. In this
system, the density of normal modes, instead of vanishing as
the frequency is lowered toward zero, as in a crystal, remains
constant as shown in Fig. 1�a�. This excess in the density of
states can be interpreted as a diverging boson peak �see Fig.
1 in Ref. �9��. Thus, one might expect the marginally jammed
solid to provide the clearest window into the anomalous low-
frequency normal modes characteristic of all amorphous sol-
ids.

Previously, we have found that the characteristic fre-
quency and size of the boson peak can be tuned systemati-
cally by compressing the marginally jammed solid to higher
packing fractions �9�. In the present paper we analyze the
structure of the normal modes of disordered packings in
three dimensions �3D� in the marginally jammed state and at
compressions above this state. We examine the nature of the
modes over the range of frequencies in which the density of
vibrational states changes character.

II. SIMULATION MODEL

The system we study here is identical to the one used
previously to calculate the density of vibrational states

�8,9,15�. We simulate a 3D system of N monodisperse soft
spheres of mass m and diameter � in cubic simulation cells
employing periodic boundary conditions �8�. The particles
interact via a finite-range, purely repulsive, harmonic poten-
tial

V�r� = �V0�1 − r/��2, r � � ,

0, r � � ,
� �1�

where r is the center-to-center distance between two par-
ticles. Length and time are measured in units of � and
�m�2 /V0�1/2, respectively, and V0 sets the energy scale. We
initially place N particles at random in a cubic box of linear
dimension L. This corresponds to a T=� configuration. We
use conjugate-gradient energy minimization �16� in order to
obtain T=0 configurations.

The onset of jamming in the limit of large N occurs at a
packing fraction �c

N→�=0.639�0.003 �7�, and is character-
ized by the onset of a nonzero pressure. We determine �c for
each of our finite-system initial configurations by incremen-
tally compressing �decompressing� until the pressure just be-
comes nonzero �just reaches zero�. We then compress the
system to obtain zero-temperature compressed configurations
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FIG. 1. Density of states D��� of 3D jammed packings of
monodisperse spheres at three different compressions 	�= �a� 10−6,
�b� 10−2, and �c� 10−1. In �a� we identify regime B�, and in �b� we
identify the regimes A, B, and C discussed in the text. The lines
show data for the systems with N=1024. The symbols show the
low- and high-frequency portions of D��� for N=10 000. There is
no discernible size dependence.
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at controlled values of 	���−�c. For each of these con-
figurations, we compute and diagonalize the dynamical ma-
trix �17�. The eigenvalues and eigenmodes of this matrix are
respectively the squared frequencies �2 of the normal modes
of vibration and the corresponding polarizations ei�

of each
particle i in the normal mode of frequency �.

We studied two system sizes in 3D. For N=1024 we gen-
erated ten independent initial configurations, hence averag-
ing over ten realizations at each value of 	�. For this system
size, L�10, we are able to obtain the full vibrational spec-
trum but remain restricted in the extent of spatial informa-
tion. To overcome this, we also generated five independent
realizations with N=10 000, resulting in L�20, from which
we are able to extract spatial correlation functions character-
izing the modes. For these larger systems we are able to
extract only a limited range of the low- and high-frequency
portions of the vibrational spectrum. In these frequency
ranges, we do not see any system-size dependence in the
density of states as indicated in Fig. 1. Additionally, to visu-
alize the normal modes, we have also studied N=10 000 bid-
isperse 50:50 mixtures of harmonic disks with a diameter
ratio of 1.4 in 2D.

III. RESULTS

A. Normal mode statistics

In a previous paper �9�, we analyzed the density of vibra-
tional states D��� of configurations above the jamming
threshold, for systems at �
�c, and found three character-
istic regimes, as labeled in Fig. 1�b�. In regime A, D���
decreases toward zero as �→0. In regime B �including B� in
Fig. 1�a��, D��� is approximately constant, which is very
different than for crystals. Finally, in regime C at high fre-
quencies, D��� decreases with increasing frequency. Figures
1�a�–1�c� shows how the different regimes shift with increas-
ing compression. At high 	�, corresponding to high com-
pressions, regime A extends to fairly high frequencies and
regime B is small. As the system is decompressed toward the
marginally jammed solid at 	�=0, regime A shrinks and
regime B grows, extending all the way down to zero fre-
quency, as indicated by B� in Fig. 1�a�, while regime C re-
mains approximately the same. The growth of regime B at
the expense of regime A with decreasing compression signals
the proliferation of anomalous low-frequency modes. These
are the modes whose structure we wish to understand. We
also point out that D��� for 2D jammed packings of bidis-
perse disks exhibits similar behavior to our 3D results �13�.

B. Visualization of modes in two dimensions

Because three-dimensional structures are hard to visual-
ize, we turn to a bidisperse two-dimensional system in order
to visualize the structure of the modes in each of these re-
gions. Many features of 2D marginally jammed solids are
similar to those in 3D �8�. Figure 2 shows typical normal
modes from regimes A, B�, B, and C, defined in Figs. 1�a�
and 1�b�, for the equivalent 2D system. In the left panels, the
polarization vector for each particle is shown, while in the
right panel, each particle is shaded according to the magni-

tude of its polarization vector. The mode from regime A, Fig.
2 �top�, appears to have some plane-wave-like character, al-
though contributions from several different wave vectors are
readily apparent. The high-frequency mode corresponding to

FIG. 2. Visualization of normal modes for a 2D jammed packing
where visualization is easier than in 3D. The systems are for a 50:50
mix of N=10 000 bidisperse disks, with size ratio 1:1.4, interacting
with the potential defined in Eq. �1�. These figures correspond to the
regimes identified in Figs. 1�a� and 1�b�, characterized by �	� ,��.
Top row panels: regime A �1�10−1 ,1.76�10−2�. Second row: re-
gime B� �1�10−6 ,3.35�10−4�. Third row: regime B �1
�10−6 ,0.3�. Bottom row: regime C �1�10−1 ,2.30�. Left panels:
black lines represent the amplitude and direction of the particle
vibrations in that mode. Right panels: particles are shaded accord-
ing to the magnitude of their polarization vector. The scale bar
indicates that darker shading corresponds to a larger ratio of the
amplitude to the maximum amplitude of particle displacement in
that mode. Particles with no contact neighbors are not shown.
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regime C, Fig. 2 �bottom�, is highly localized. This particular
mode is representative of the high-frequency modes at all
values of 	�; visualizations of individual modes at different
	� in this high-frequency region show similar features to
that shown in Fig. 2 �bottom�.

The modes from regimes B� and B, Fig. 2 �middle�, are
neither plane-wave-like nor localized. The right panels more
clearly reveal the filamentary nature of the extended vibra-
tional modes in regimes B� and B. These visualizations al-
ready suggest some subtle differences between regimes B�
and B which we quantify below �see Fig. 7 and related dis-
cussion�. Figure 2 suggests that the modes from both regimes
A and B are extended.

C. Participation ratio

To analyze directly how extended each mode is, we cal-
culate the inverse participation ratio

P−1 =

	
i=1

N


ei�
· ei�


2

�	
i=1

N

ei�
· ei��2

. �2�

Here ei�
is the polarization vector of particle i in the mode �.

We show the results for 	�=10−6, 10−3, and 10−1 in Fig. 3.
The data shown are averaged over narrow bins of frequency.
We find that on a log-log scale the averaged participation
ratio looks quite similar for values of 	� up to at least 	�
�10−3. For high compressions �	�=0.1 and higher�, P−1 at
the very highest frequencies �regime C� appears to decrease
with increasing compression, but the average P−1 is still
large in regime C at all compressions. Thus, the modes in
regime C are localized at all compressions. At lower frequen-

cies, however, up to ��2, we find P−1�1, indicating that
the modes are extended over the size of the system. Thus,
modes in regimes A and B are, on average, extended, while
those in regime C are localized.

D. Level repulsion

For these jammed, mechanically stable packings, there
exist local correlations in the force constants that constitute
the dynamical matrix: The forces around each and every par-
ticle must be locally balanced. Upon analyzing the spacings
	�=� j+1−� j between successive normal mode frequencies,
we find level repulsion in the distribution of level spacings,
P�s�, where we define s=	� / �	� as the level spacing nor-
malized by the average �	�. The total distributions shown
in Fig. 4�a� show little dependence on distance to the jam-
ming threshold, and are described quite well by the Wigner-
Dyson distribution �18�

P�s� =
s

2
e−s2/4. �3�

The distributions are peaked around the average spacing and
indicate level repulsion by the linear behavior at small spac-
ing consistent with studies in two dimensions �19�. Thus,
even though the dynamical matrix is sparse, due to the short-
range nature of the interaction potential, the level spacings
are not completely random, which would lead to a Poisson
distribution, nor are they completely correlated. Note that in
Fig. 4�a� all modes have been included, even the localized
modes at high frequency. If the localized modes are consid-
ered separately, it has been shown in 2D systems that the
level spacings are uncorrelated and have a Poissonian distri-
bution �19�. We find consistent results in 3D as shown in Fig.
4�b�.

E. Correlations in normal modes

Another way to characterize the modes is to look at local
correlations of the polarizations of neighboring particles. We
calculate a quantity, cos �e, that is similar to the phase quo-
tient parameter often probed in glasses �20�,

cos �e��� =
1

Npairs
	
i,j

êi�
· ê j�

�4�

where the sum only runs over the number of pairs of par-
ticles that interact with each other, Npairs, and the normalized
polarization vector of particle i associated with the normal
mode of frequency �, êi�

=ei�
/ 
ei�


. For a mode in which
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FIG. 3. Inverse participation ratio P−1 for 3D jammed packings
of N=1024 monodisperse spheres, at three compressions. The data
are averaged over narrow bins of frequency.
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FIG. 4. Distribution P�s� of level spacings s
normalized by the average level spacing for N
=1024 monodisperse spheres in 3D. �a� The dis-
tribution for all modes in the system at 	�
=10−1 ��� and 10−6 ���. Inset: linear behavior at
small s. The lines are fits to the Wigner-Dyson
function of Eq. �3�. �b� The distribution for only
the localized modes at high frequency.
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every particle is vibrating in approximately the same direc-
tion, i.e., strongly correlated motion, one would expect
cos �e�1. Figure 5 shows cos �e as a function of frequency
at three values of 	�. Up to compressions of order 	�
=10−3, the behavior of cos �e with � is insensitive to com-
pression. Over that range of compressions, cos �e decreases
linearly with increasing frequency, showing that in the low-
frequency modes particle displacements are more correlated
with their neighbors and in high-frequency modes particle
displacements are more anticorrelated with their neighbors.
Note that the frequency ranges of regimes A and B change
appreciably with 	�, while cos �e��� does not; this suggests
that the correlations are not noticeably different in the two
regimes. At high compressions, the curve begins to show a
kink at approximately �=1.75 �the boundary between re-
gimes B and C�.

By visual inspection of the 2D modes of Fig. 2, the low-
frequency modes both near and far from the jamming thresh-
old appear to have somewhat different character. We contend
that compressed systems away from the jamming threshold
contain low-frequency modes that are more plane-wave-like,
whereas near the jamming transition, these extended modes
are very different from plane waves. At intermediate and
high frequencies the modes appear relatively insensitive to
packing fraction. In an effort to further differentiate between
the natures of the low-frequency modes we measure the spa-
tial extent of correlated vibrational motions. For each mode
of frequency �, we compute the correlation of polarization
vectors between particles i and j,

C�rij� = �ê�ri� · ê�r j� . �5�

In Fig. 6 we show C�r� for the lowest-lying frequency modes
and those at intermediate frequencies, at three different com-
pressions 	�=10−6, 10−2, and 10−1 for our 3D jammed pack-
ings.

For the low-frequency modes, Fig. 6�a�, we find some-
what stronger correlations at higher compressions. For the
middle to high-frequency range of the vibrational spectrum,
beyond regime A, Fig. 6�b�, the normal modes become in-
creasingly similar at different compressions. In regime C, the
modes are indistinguishable at different compressions.

All of the correlation functions in Fig. 6 decay nonmono-
tonically to zero and cross zero at some finite r. We define
the value of r at which C�r� first crosses zero to be ����. In
a pure plane wave, particle vibrations are correlated and C�r�
will cross zero at the scale of half the wavelength, so for

ordinary sound modes at low frequency, one would expect
�����1 /�. In Fig. 7, we plot � as a function of � for dif-
ferent 	� at low to intermediate frequencies. For the system
closest to the jamming threshold, � is approximately inde-
pendent of � at very low frequencies. Beyond this constant
region, � decreases with increasing frequency, corresponding
to moving along the plateau in the density of states from
regime B� to B �21�. As the system moves further from the
jamming threshold, i.e., as 	� increases, the region of con-
stant � shrinks. Over the range of frequencies where � de-
creases, the characteristic length is greater the further the
system is from the jamming threshold. This is to be expected
as the modes contain more plane-wave character at larger
compressions. At slightly higher frequencies still, the curves
begin to overlap, indicating that the modes become practi-
cally indistinguishable. The frequency at which this occurs
coincides with the point in the density of states where the
plateau regions start to merge �see Fig. 1 of Ref. �9��. These
data suggest that the distinction between modes from re-
gimes B� and B is related to how extended the modes are.
This is already evident from the visualizations presented in
Fig. 2.

F. Dispersion behavior

Another way to quantify the difference between the ex-
tended modes in regimes A and B is through the Fourier
transforms of the eigenmodes at different frequencies �
throughout the spectrum. Specifically, we take the Fourier
transform of the appropriate component, either longitudinal
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FIG. 5. Correlation between particle displacements in a mode,
measured using cos �e defined by Eq. �4�, at three compressions for
3D jammed packings with N=1024 monodisperse spheres.
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FIG. 6. Spatial correlation function C�r� of particle vibrations at
three values of 	�=10−6 �solid line�, 10−2 �dashed�, and 10−1 �dot-
ted�, for N=10 000 monodisperse spheres in 3D, averaged over �a�
the ten lowest-lying frequency modes, and �b� ten modes at inter-
mediate frequencies ��0.5.
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or transverse, of the particle polarization vector e j��� of each
particle j �3,9�:

fL�k,�� =� 1

N�	j

k̂ · e j�
exp�ık · r j��2� ,

fT�k,�� =� 1

N�	j

k̂ ∧ e j�
exp�ık · r j��2� . �6�

In a perfect crystal, these functions would be � functions
at the wave numbers k in each Brillouin zone characterizing
the longitudinal or transverse vibrational modes at frequency
�. In Fig. 8, we show fL�k ,�� and fT�k ,�� curves for two
disordered configurations in three frequency bands: �i� at the
lowest frequency, �ii� in the middle of the band, and �iii� at
the high-frequency end of the spectrum. Each curve is aver-
aged over a narrow bin of frequencies. For comparison, Figs.
8�a� and 8�b� are from a system very close to the jamming
threshold, at 	�=10−6, and Figs. 8�c� and 8�d� are for a
system that is highly compressed and far from the jamming
threshold, at 	�=10−1. At 	�=10−6, the low- and mid-
frequency curves correspond to vibrational states in regime
B� defined in Fig. 1�a�, where the density of states is rela-
tively flat, while the high-frequency curve corresponds to
regime C. At high compression, 	�=10−1, the low-
frequency curve corresponds to a state in regime A, the mid-
frequency curve corresponds to regime B, and the high-
frequency curve corresponds to regime C.

The longitudinal functions in general show much more
pronounced structure than do their transverse counterparts.
The only exception to this occurs at very low frequencies
and small wave vectors. In this region the transverse function
has a very tall first peak and the longitudinal function shows
only a hint of structure. The low-wave-vector part of the
peak in fT�k ,�low� is not resolved because it occurs at k
�2 /L where L is the size of the system. That is, the peak is
cut off because of the finite size of the system. The first peak
in fL�k ,�low� is also absent for the same reason. In order to

see this structure, one would have to either use a larger box
size at the same value of frequency or else look at fL�k ,�� at
a larger value of �.

There are multiple oscillations visible in the longitudinal
response fL�k ,��. This structure can be thought of as the
equivalent of the repeated structure seen in the higher Bril-
louin zones of a crystal �3�. It reflects the large, sharp first
peak in the pair-correlation function g�r� �22�, which leads to
strong oscillations in the structure factor S�k�
= �
	i exp�ık ·ri�
2 �8�. Similar oscillations show up but with
a very much smaller amplitude in fT�k ,��.

Overall, the results look fairly similar for the two com-
pressions, although individual packings exhibit fluctuations
about the averaged behavior. For the longitudinal response,
the peaks are somewhat smaller and wider at low compres-
sion. However, the most obvious difference is not in the
peaks but in the minima between them, which become shal-
lower at small 	�. This is particularly apparent at the lower
frequencies in the longitudinal response. This means that
more wave vectors are making significant contributions to
the low-frequency longitudinal modes at low compression
�which are in regime B� than to low-frequency longitudinal
modes at high compression �which are in regime A�, making
the mode very different from any plane wave with a single
wave vector. A similar trend is apparent in the transverse
response. Contributions of wave vectors different from the
peak value are relatively larger at low compressions; that is,
more wave vectors contribute to eigenmodes in regime B
than in regime A. The intermediate wave-vector oscillations,
clearly visible at 	�=10−1, are much less pronounced near
the onset of jamming. At low frequency, the transverse re-
sponse is practically flat at wave vectors k
5—all of these
high wave vectors contribute nearly equally in regime B
�23�.

The velocity of longitudinal or transverse sound can be
estimated from the frequency dependence of the position of
the first peak in fL�k ,�� or fT�k ,��. Unlike in crystals, the
dispersion curve is not well defined at the frequencies repre-
sented here because, as we have seen in Fig. 8, fL�k ,�� and
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FIG. 8. Fourier transforms of the eigenmodes
for the low- �solid line�, middle- �dashed line�,
and high- �dotted line� frequency regions of the
vibrational spectrum, at two extreme compres-
sions for N=1024 monodisperse spheres in 3D.
Top panels: 	�=1�10−6, for the �a� longitudinal
and �b� transverse components. Bottom panels:
	�=1�10−1, for the �c� longitudinal and �d�
transverse components. Insets to �b� and �d� show
the dominance of the low-k peak in the transverse
functions.
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fT�k ,�� have significant amplitude over a large range of
wave vector at all frequencies. As a result, it is not sufficient
to simply plot the positions of the peaks of the dynamic
structure factors as one might do for a crystal. Only at very
low values of �, below what is shown for these finite-size
samples, do the dispersion curves have sharp peaks corre-
sponding to sound waves.

To emphasize the idea of mode mixing, the dispersion
data are best visualized on a gray scale plot as shown in Fig.
9. �The features outlined here have been seen in a range of
glassy systems, including soft-sphere �24�, covalent �25�, and
metallic �26� glasses.�

Because the amplitude of the first peak in fT�k ,�� is so
strong, variations at wave vectors greater than the first peak
are lost in Fig. 9. Therefore, to observe the underlying struc-
ture in the dispersion data at larger wave vectors, in Fig. 10
we show the transverse dispersion curves over a limited
range in amplitude. These nicely contrast the unusual under-
lying structure to the dispersion relations at the two compres-
sions.

It is clear from looking at these plots that the dispersion
relations are very broad indeed, especially at low compres-
sion. Moreover, there is very little difference between the
two compressions, although the contrast decreases for both
transverse and longitudinal modes with decreasing compres-
sion. The limit of what we can achieve is 	�=10−6. It is not
clear to us whether the variations in fT�k ,�� would disappear
entirely if one were able to go even closer to 	�=0.

It is also unclear how to define a proper velocity of sound,
not only because the peaks in the dispersion relations are so
broad, but also because their amplitudes decay rapidly with
increasing �k ,��. We illustrate this latter point in Fig. 11
where we show the approximately exponential decay of the
maximum peak height of the transverse Fourier modes with
increasing frequency. We have been unable to determine pre-
cisely whether the decay constant depends on compression;
although there appears to be a difference between the two
compressions shown in Fig. 11, that difference is small.

IV. CONCLUSIONS

In summary, we have studied the characteristics of vibra-
tional modes as a function of frequency at different compres-
sions. From the density of states, we see that there are three
regimes: regime A, where the density of states drops towards
zero as the frequency goes to zero; regime B, where the
density of states is approximately flat; and regime C, where
the density of states decreases toward zero with increasing
frequency. As the system is decompressed toward the mar-
ginally jammed state, regime B �or B�� increases at the ex-
pense of regime A while regime C is relatively unaffected.
Modes from regime C are localized while modes from re-
gimes A and B are extended. Those in regime A are some-
what more like plane waves, with slightly narrower peaks in
the dynamic structure factor, compared to those in regime B.
Generally, however, we do not observe strong differences
between modes from regimes B and A. Thus, we conclude
that the change in the nature of the modes with decreasing
compression is much less dramatic than the change in the
density of vibrational states.

This result is surprising in the context of the theory of the
vibrational properties by Wyart et al. �10�. In that theory, the
change in the density of states as one raises the frequency
from regime A to regime B heralds the onset of a new type of
vibrational mode, an “anomalous mode,” which is very dif-
ferent in character from the plane-wave-like modes expected

FIG. 9. Dispersion relation at two different compressions for
N=1024 monodisperse spheres in 3D. Left panels: 	�=1�10−6.
Right panels: 	�=1�10−1. Top and bottom panels correspond to
longitudinal and transverse modes, respectively. Darker shading
corresponds to larger amplitude in fL,T. The maxima of the trans-
verse amplitudes are typically a factor of 5 larger than for the lon-
gitudinal data. The bars to the right indicate the amplitude scale.

FIG. 10. Transverse dispersion data of Fig. 9 for 	�=1�10−6

�left� and 1�10−1 �right�, over a limited range in amplitude fT �see
scale bar�.
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FIG. 11. Decay of the peak maximum of the transverse mode
transforms within the first Brillouin zone, for 	�=10−1 �solid line�
and 10−6 �dashed line�. For N=1024 in 3D.
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in regime A. In contrast, we observe that the modes are not
strongly plane-wave-like even in regime A. Xu et al. �5� find
that for the model studied in this paper the onset of the pla-
teau in the spectrum �crossover from regime A to B� does not
correspond to any noticeable change in the transport proper-
ties, consistent with our results. However, Xu et al. �5� find
that in a related “unstressed model,” in which the potential is
replaced by harmonic springs at their equilibrium length, the
change in the vibrational spectrum coincides with a change
in the transport properties of the modes, as expected theoreti-
cally �10�. In stressed systems, such as those studied here, it
is possible that the modes might change character and re-

semble plane waves more strongly at lower frequencies in
some regime A� below regime A, inaccessible in our finite-
size systems. Work on energy transport in the same model
�5� suggests that this may occur.
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